Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Obesity (Silver Spring) ; 32(2): 339-351, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086768

RESUMEN

OBJECTIVE: By exposing mice carrying a deletion of NADPH oxidase isoform 4, NOX4, specifically in pancreatic ß cells (ßNOX4-/-) to nutrient excess stimulated by a high-fat diet (HFD), this study aimed to elucidate the role of ß-cell redox status in the development of meta-inflammation within the diabetic phenotype. METHODS: The authors performed basic phenotyping of ßNOX4-/- mice on HFD involving insulin and glycemic analyses, histochemistry of adipocytes, indirect calorimetry, and cytokine analyses. To characterize local inflammation, the study used caspase-1 activity assay, interleukin-1ß immunochemistry, and real-time polymerase chain reaction during coculturing of ß cells with macrophages. RESULTS: The phenotype of ßNOX4-/- mice on HFD was not associated with hyperinsulinemia and hyperglycemia but showed accumulation of excessive lipids in epididymal fat and ß cells. Surprisingly, mice showed significantly reduced systemic inflammation. Decreased interleukin-1ß protein levels and downregulated NLRP3-inflammasome activity were observed on chronic glucose overload in ßNOX4-/- isolated islets and NOX4-silenced INS1-E cells resulting in attenuated proinflammatory polarization of macrophages/monocytes in vitro and in situ and reduced local islet inflammation. CONCLUSIONS: Experimental evidence suggests that NOX4 pro-oxidant activity in ß cells is involved in NLRP3-inflammasome activation during chronic nutrient overload and participates in local inflammatory signaling and perhaps toward peripheral tissues, contributing to a diabetic inflammatory phenotype.


Asunto(s)
Diabetes Mellitus , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Inflamasomas/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , NADPH Oxidasa 4/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
2.
Front Immunol ; 14: 1223122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497214

RESUMEN

Introduction: In pulmonary hypertension (PH), pulmonary arterial remodeling is often accompanied by perivascular inflammation. The inflammation is characterized by the accumulation of activated macrophages and lymphocytes within the adventitial stroma, which is comprised primarily of fibroblasts. The well-known ability of fibroblasts to secrete interleukins and chemokines has previously been implicated as contributing to this tissue-specific inflammation in PH vessels. We were interested if pulmonary fibroblasts from PH arteries contribute to microenvironmental changes that could activate and polarize T-cells in PH. Methods: We used single-cell RNA sequencing of intact bovine distal pulmonary arteries (dPAs) from PH and control animals and flow cytometry, mRNA expression analysis, and respirometry analysis of blood-derived bovine/human T-cells exposed to conditioned media obtained from pulmonary fibroblasts of PH/control animals and IPAH/control patients (CM-(h)PH Fibs vs CM-(h)CO Fibs). Results: Single-cell RNA sequencing of intact bovine dPAs from PH and control animals revealed a pro-inflammatory phenotype of CD4+ T-cells and simultaneous absence of regulatory T-cells (FoxP3+ Tregs). By exposing T-cells to CM-(h)PH Fibs we stimulated their proinflammatory differentiation documented by increased IFNγ and decreased IL4, IL10, and TGFß mRNA and protein expression. Interestingly, we demonstrated a reduction in the number of suppressive T-cell subsets, i.e., human/bovine Tregs and bovine γδ T-cells treated with CM-(h)PH-Fibs. We also noted inhibition of anti-inflammatory cytokine expression (IL10, TGFß, IL4). Pro-inflammatory polarization of bovine T-cells exposed to CM-PH Fibs correlated with metabolic shift to glycolysis and lactate production with increased prooxidant intracellular status as well as increased proliferation of T-cells. To determine whether metabolic reprogramming of PH-Fibs was directly contributing to the effects of PH-Fibs conditioned media on T-cell polarization, we treated PH-Fibs with the HDAC inhibitor SAHA, which was previously shown to normalize metabolic status and examined the effects of the conditioned media. We observed significant suppression of inflammatory polarization associated with decreased T-cell proliferation and recovery of mitochondrial energy metabolism. Conclusion: This study demonstrates how the pulmonary fibroblast-derived microenvironment can activate and differentiate T-cells to trigger local inflammation, which is part of the vascular wall remodeling process in PH.


Asunto(s)
Hipertensión Pulmonar , Humanos , Animales , Bovinos , Hipertensión Pulmonar/metabolismo , Medios de Cultivo Condicionados/metabolismo , Interleucina-10 , Interleucina-4 , Inflamación/metabolismo , Subgrupos de Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA